ERK Is Involved in the Reorganization of Somatosensory Cortical Maps in Adult Rats Submitted to Hindlimb Unloading

نویسندگان

  • Erwan Dupont
  • Laurence Stevens
  • Laetitia Cochon
  • Maurice Falempin
  • Bruno Bastide
  • Marie-Hélène Canu
چکیده

Sensorimotor restriction by a 14-day period of hindlimb unloading (HU) in the adult rat induces a reorganization of topographic maps and receptive fields. However, the underlying mechanisms are still unclear. Interest was turned towards a possible implication of intracellular MAPK signaling pathway since Extracellular-signal-Regulated Kinase 1/2 (ERK1/2) is known to play a significant role in the control of synaptic plasticity. In order to better understand the mechanisms underlying cortical plasticity in adult rats submitted to a sensorimotor restriction, we analyzed the time-course of ERK1/2 activation by immunoblot and of cortical reorganization by electrophysiological recordings, on rats submitted to hindlimb unloading over four weeks. Immunohistochemistry analysis provided evidence that ERK1/2 phosphorylation was increased in layer III neurons of the somatosensory cortex. This increase was transient, and parallel to the changes in hindpaw cortical map area (layer IV). By contrast, receptive fields were progressively enlarged from 7 to 28 days of hindlimb unloading. To determine whether ERK1/2 was involved in cortical remapping, we administered a specific ERK1/2 inhibitor (PD-98059) through osmotic mini-pump in rats hindlimb unloaded for 14 days. Results demonstrate that focal inhibition of ERK1/2 pathway prevents cortical reorganization, but had no effect on receptive fields. These results suggest that ERK1/2 plays a role in the induction of cortical plasticity during hindlimb unloading.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P 23: Apoptosis Following Cortical Spreading Depression in Juvenile Rats

Introduction: Repetitive cortical spreading depression (CSD) can lead to cell death in immature brain tissue. Caspases are involved in neuronal cell death in several CSD-related neurological disorders. Yet, whether repetitive CSD itself can induce caspase activation in adult or juvenile tissue remains unknown. Inducing repetitive CSD in somatosensory cortices of juvenile and adult rats in vivo,...

متن کامل

Cortical involvement in the induction, but not expression, of thalamic plasticity.

The present study examined the role of the somatosensory cortex in the plasticity of thalamic sensory maps. Thalamic plasticity was induced by the disruption of hindlimb input by unilateral destruction of nucleus gracilis. Unilateral somatosensory cortex lesions were performed either on the same day as or a week after the removal of hindlimb input. Multiple electrode penetrations enabled us to ...

متن کامل

Role of development in reorganization of the SI forelimb-stump representation in fetally, neonatally, and adult amputated rats.

Rats that sustain forelimb removal on postnatal day (P) 0 exhibit numerous multi-unit recording sites in the forelimb-stump representation of primary somatosensory cortex (SI) that also respond to hindlimb stimulation when cortical GABAA+B receptors are blocked. Most of these hindlimb inputs originate in the medial SI hindlimb representation. Although many forelimb-stump sites in these animals ...

متن کامل

Effect of locus ceruleus phasic electrical stimulation on responses of barrel cortical cells to controlled mechanical displacement in rats

Behavioral and electrophysiological evidences have shown that locus ceruleus (LC) is involved in different tasks including modulation of sensory processing and shift of attention. In the present study, single unit responses of barrel cortical cells was recorded following controlled mechanical displacement of the principal and peripheral vibrissae in adult rats (100 trials of 200 µm deflection f...

متن کامل

Title: Does Reorganization in the Cuneate Nucleus Following Neonatal Forelimb Amputation Influence Development of Anomalous Circuits within the Somatosensory Cortex? Abbreviated title: Does Cuneate Reorganization Influence Anomalous Cortical Circuit Authors:

Neonatal forelimb amputation in rats produces sprouting of sciatic nerve afferent fibers into the cuneate nucleus (CN) and results in 40% of individual CN neurons expressing both forelimb-stump and hindlimb receptive fields. The forelimb-stump region of primary somatosensory cortex (S-I) of these rats contains neurons in layer IV that express both stump and hindlimb receptive fields. However, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011